پرداخت امن توسط کارتهای شتاب
بازگشت وجه ضمانت بازگشت تا 7 روز
تضمین کیفیت ضمانت تضمین کیفیت
پشتیبانی 24 ساعته 7 روز هفته

فیلتر کالمن

فیلتر کالمن
۶۹,۰۰۰ تومان٪14 تخفیف

همونطور که میدانید بحث تخمینگر (Estimator) یا رویتگر (Observer) نه تنها در مهندسی کنترل (Control Engineering) و مهندسی برق (Electrical Engineering)، بلکه در تمامی رشته‌های مهندسی و حتی غیر مهندسی از جمله مهندسی مکانیک (Mechanical Engineering)، مهندسی شیمی (Chemical Engineering)، مهندسی هوافضا (Aerospace Engineering)، روباتیک (Robotics)، اقتصاد (Economics)، بوم‌شناسی (Ecology) و زیست‌شناسی (Biology) کاربرد فراوانی دارد. از طرف دیگر، فیلتر کالمن (Kalman Filter) به عنوان یک تخمینگر بهینه پرکاربردترین و محبوبترین رویتگر در تمامی کاربردهاست که مقالات و کتابهای بسیاری در مورد آن نوشته شده و هنوز هم کارهای تحقیقاتی زیادی در مورد آن انجام میشود. البته بحث تخمین به فیلتر کالمن و مشتقات آن محدود نشده و تخمینگرهای زیاد دیگری هم وجود دارند که استفاده میشوند.

من به عنوان یک مهندس کنترل در درسهای مختلفی که گذرانده‌ام، به صورت جسته گریخته با یک سری اطلاعات گسسته در مورد تخمینگرها مواجه شدم؛ از جمله بحث رویتگرهای لیونبرگر در درس کنترل مدرن یا فیلتر کالمن در درس کنترل فرآیندهای اتفاقی، اما هیچوقت به صورت منظم و سازمان یافته تخمینگرها را نشناختم. بنابراین قصد دارم در این سری فیلمها، سیر تا پیاز تخمینگرها، انواع، کاربردها، نحوه تحلیل و طراحی، نحوه پیاده‌سازی در متلب و هر چیزی که ممکن است در این مسیر مورد نیاز باشد، خدمت شما تقدیم کنم.

برای این کار یکی از کتابهای خیلی خوب و جامع را به عنوان مرجع اصلی این سری فیلمها در نظر گرفتم. نام کامل این کتاب “تخمینگرهای بهینه حالت، کالمن، H و روشهای غیرخطی” بوده و نویسند آن Dan Simon از دانشگاه کلیولند است. این کتاب مزایای زیادی دارد که در جلسه اول به بعضی از آنها اشاره کرده‌ام. علاوه بر این کتاب که جنبه تئوری بحث را از آن دنبال میکنم، یک تولباکس (بر اساس متلب) رایگان و خیلی مفید را خدمت شما معرفی میکنم که شامل بسیاری از روشهای موجود بوده و از آن میتوان برای پیاده‌سازی اکثر تخمینگرها استفاده کرد. نام این تولباکس “فیلترینگ بهینه با استفاده از فیلترهای کالمن و اسموترها” بوده و تهیه کننده اصلی آن Simo Sarkka از دانشگاه آلتو فنلاند است که خودش در زمینه فیلتر کالمن و هموارسازها تحقیقات زیادی انجام داده است. با توجه به اینکه این تولباکس تمام روشهای موجود در کتاب رو پوشش نمیدهد، توابع مورد نیاز برای پیاده سازی این روشها به تدریج معرفی شده و نحوه اضافه کردن آنها به تولباکس و نحوه استفاده از آنها به طور کامل توضیح داده میشود.

به صورت خلاصه مباحث زیر در این سری فیلمها مورد بررسی قرار می گیرند:

  • مقدمات ریاضی از جمله جبرخطی و سیستمهای دینامیکی و فرآیندهای تصادفی
  • تخمین حداقل مربعات (Least Squares Estimation)
  • انتشار حالت و کواریانس (Propagation of States and Covariance)
  • فیلتر کالمن گسسته (Discrete Kalman Filter) و هموارساز آن (Kalman Smoother)
  • انواع فرمولبندیهای دیگر فیلتر کالمن
  • فیلتر کالمن برای سیستمهای دارای نویز رنگی (Colored Noise) و همبسته (Correlated)
  • فیلتر کالمن پیوسته Kalman Bucy Filter) KBF)
  • فیلتر H
  • ترکیب فیلتر H و کالمن
  • فیلتر کالمن توسعه یافته Extended Kalman Filter) EKF) و هموارساز آن (EKF Smoother)
  • فیلتر کالمن بدون بو! Unscented Kalman Filter) UKF) و هموارساز آن (UKF Smoother)
  • فیلتر ذره‌ای (Particle Filter)
  • فیلتر Extended Kalman Particle Filter) EKPF)
  • فیلتر کالمن مکعبی Cubature Kalman Filter) CKF) و هموارساز آن (CKF Smoother)
  • فیلتر کالمن گاوس-هرمیت Gauss-Hermite Kalman Filter) GHKF) و هموارساز آن (GHKF Smoother)
  • فیلتر کالمن تفاضل مرکزی Central Difference Kalman Filter) CDKF)
  • فیلتر کالمن برای سیستمهای دارای مدل چندگانه (سیستمهای سویچینگ مارکوف) Interacting Multiple Models Filters) IMM)

 

پیش نیازها: آشنایی اولیه با کدنویسی در متلب

لطفا قبل از دیدن ادامه پست حتما این ویدئو را ببینید:

برای اطلاع از فهرست موضوعی تمامی جلسات اینجا کلیک کنید

نکته آخر اینکه شاید برایتان جالب باشد که دکتر کیوان افشار مقاله زیر را با راهنمایی دکتر جوادی از جلسه 108 این مجموعه چاپ کرده است.

Mass estimation and adaptive output feedback control of nonlinear electromagnetic levitation system

 

برای دیدن جزئیات هر جلسه شامل: پیش نمایش هر جلسه، موضوع هر جلسه، مدت زمان هر جلسه و …. به تب فهرست جلسات بروید

برای خرید یک یا چند فصل به تب خرید موضوعی بروید.

مطالعه بیشتر

راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.

جلسه اول :

 در این جلسه تخمینگرهای (رویتگرهای) مختلف از جمله خطی و غیرخطی، گسسته و پیوسته و حالت ترکیبی طبقه بندی شده و از هر نوع چند نمونه معرفی می‌شود. به علاوه، انواع فیلتر کالمن و توسعه یافته های آن به عنوان یکی از مهمترین و کاربردی‌ترین رویتگرها بیان می‌شود. در ادامه، زندگینامه کوتاه Rudolf (Rudi) Emil Kalman آورده شده و سوابق تحقیقاتی و جوایز دریافتی وی نیز بیان می‌شود. همچنین مرجع اصلی این سری فیلمها که کتاب تخمین بهینه حالت نوشته شده توسط Dan Simon است، معرفی شده و یک کتاب دیگر نیز در این زمینه به عنوان نمونه نشان داده می‌شود. علاوه بر کتاب تخمین بهینه حالت که تئوری آن از کتاب Dan Simon دنبال می‌شود، بیشتر شبیه‌سازیها و کدنویسی‌ها برای پیاده‌سازی فیلترهای مختلف از طریق تولباکس ekf/ukf تهیه شده توسط Simo Sarkka، انجام می‌شود که در این جلسه معرفی می‌شود. جهت ارزیابی شما عزیزان جلسه اول رایگان تقدیم می‌شود.

مدت زمان آموزش: 78 دقیقه

حجم فایل: 239 مگابایت

محتویات درس: فیلم با کیفیت 720p - پاورپوینت درس – کتاب "تخمین بهینه حالت" اثر Dan Simon - کتاب "تخمین بهینه با کاربردهای آن برای ردیابی و ناوبری" اثر Yaakov Bar-Shalom – تولباکس "ekf/ukf" تهیه شده توسط Simo Sarkka

جلسه اول:

 
تمام پیش نمایشها دارای کیفیت 720p هستند ولی ممکن است به علت سرعت کم اینترنت شما با کیفیت پایینتر نمایش داده شوند.
 با نگهداشتن نشانگر بر روی گزینه Capture در نوار پایین صفحه نمایش، می‌توانید کیفیت دلخواه را انتخاب کنید

جلسه دوم : 


جلسه سوم : 


جلسه چهارم : 


جلسه پنجم: 


جلسه ششم: 


جلسه هفتم : 


جلسه هشتم : 


جلسه نهم : 


جلسه دهم : 


جلسه یازدهم : 


جلسه دوازدهم : 


جلسه سیزدهم : 


جلسه چهاردهم : 


جلسه پانزدهم : 


جلسه شانزدهم : 


جلسه هفدهم : 


جلسه هجدهم : 


جلسه نوزدهم : 


جلسه بیستم: 


طراحی با استفاده از واسط گرافیکی(GUI)

در تکمیل  فصل پنجم، دو نرم افزار در متلب تهیه شده که با استفاده از ورودی هایی که به آن داده می شود، فیلتر کالمن را  به صورت گرافیکی طراحی می کند.

ضمناً جهت يادگيري نحوه ايجاد gui (واسط گرافيکي در متلب) هم مي توانيد به آموزش واسط های گرافیکی در متلب و یا در اينجا کليک کنيد.

1- طراحي فيلتر کالمن گسسته با استفاده از GUI

در اين واسط گرافيکي مي توانيد براي يک سيستم گسسته از هر مرتبه اي، يک فيلتر کالمن گسسته طراحي کنيد و پاسخ واقعي، تخمين، بهره فيلتر کالمن و همچنين خطاي تخمين را مشاهده کنيد. همينطور ماتريس کواريانس خطاي حالت دائمي تخمين با استفاده از دو روش گريوال و ريکاتي و نيز خطاي RMS بين مقدار واقعي و تخمين هم نمايش داده شده است.

پیش نمایش

2- طراحي فيلتر کالمن گسسته برای یک سیستم پيوسته با استفاده از GUI

در اين واسط گرافيکي مي توانيد براي يک سيستم پيوسته از هر مرتبه اي، يک فيلتر کالمن گسسته طراحي کنيد و پاسخ واقعي، تخمين، بهره فيلتر کالمن و همچنين کواريانس خطاي تخمين را مشاهده کنيد. همينطور ماتريس کواريانس خطاي حالت دائمي تخمين با استفاده از دو روش گريوال و ريکاتي و نيز خطاي RMS بين مقدار واقعي و تخمين هم نمايش داده شده است.

پیش نمایش


جلسه بیست و یکم : 


جلسه بیست و دوم : 


جلسه بیست و سوم : 


جلسه بیست و چهارم : 


جلسه بیست و پنجم : 


جلسه بیست و ششم : 


جلسه بیست و هفتم : 


جلسه بیست و هشتم : 


جلسه بیست و نهم : 


جلسه سی ام : 


جلسه سی و یکم : 


جلسه سی و دوم : 


جلسه سی و سوم : 


جلسه سی و چهارم : 


جلسه سی و پنجم : 


جلسه سی و ششم: 


جلسه سی و هفتم : 


جلسه سی و هشتم : 


جلسه سی و نهم : 


جلسه چهلم : 


جلسه چهل و یکم : 


جلسه چهل و دوم : 


جلسه چهل و سوم : 


جلسه چهل و چهارم: 


جلسه چهل و پنجم : 


جلسه چهل و ششم : 


جلسه چهل و هفتم : 


جلسه چهل و هشتم : 


جلسه چهل و نهم : 


جلسه پنجاهم : 


جلسه پنجاه و یکم : 


جلسه پنجاه و دوم : 


جلسه پنجاه و سوم : 


جلسه پنجاه و چهارم : 


جلسه پنجاه و پنجم : 


جلسه پنجاه و ششم : 


جلسه پنجاه و هفتم : 


جلسه پنجاه و هشتم : 


جلسه پنجاه و نهم : 


جلسه شصتم : 


جلسه شصت و یکم : 


جلسه شصت و دوم :


جلسه شصت و سوم :


جلسه شصت و چهارم :


جلسه شصت و پنجم :


جلسه شصت و ششم :


جلسه شصت و هفتم :


جلسه شصت و هشتم :


جلسه شصت و نهم :


جلسه هفتادم :


جلسه هفتاد و یکم :


جلسه هفتاد و دوم :


جلسه هفتاد و سوم :


جلسه هفتاد و چهارم :


جلسه هفتاد و پنجم :


جلسه هفتاد و ششم :


جلسه هفتاد و هفتم :


جلسه هفتاد و هشتم :


جلسه هفتاد و نهم :


جلسه هشتادم :


جلسه هشتاد و یکم :


جلسه هشتاد و دوم :


جلسه هشتاد و سوم :


جلسه هشتاد و چهارم :


جلسه هشتاد و پنجم :


جلسه هشتاد و ششم :


جلسه هشتاد و هفتم :


جلسه هشتاد و هشتم :


جلسه هشتاد و نهم :


جلسه نودم:


جلسه نود و یکم :


جلسه نود و دوم :


جلسه نود و سوم :


جلسه نود و چهارم :


جلسه نود و پنجم :


جلسه نود و ششم :


جلسه نود و هفتم :


جلسه نود و هشتم :


جلسه نود و نهم:


جلسه صدم :


جلسه صد و یکم :


جلسه صد و دوم :


جلسه صد و سوم :


جلسه صد و چهارم :


جلسه صد و پنجم :


جلسه صد و ششم :


جلسه صد و هفتم:


جلسه صد و هشتم :

در صورتیکه قصد خرید فصل ها را به صورت جداگانه دارید براساس جدول زیر، شماره فصل را از منوی کشویی که بالای دکمه "افزودن به سبد خرید" است، انتخاب کنید و سپس بر روی دکمه "افزودن به سبد خرید" کلیک کنید تا فصل مربوطه به سبد خریدتان اضافه شود. 

فصل 1: جلسات 1-5 تئوری سیستم های خطی
فصل 2: جلسات 6-8 تئوری احتمالات
فصل 3: جلسات 9-11 تخمین حداقل مربعات
فصل 4: جلسات 12-13 انتشار حالت و کواریانس
فصل 5: جلسات 14-20 فیلتر کالمن گسسته
فصل 6: جلسات 21-27 فرمولبندی های دیگر فیلتر کالمن
فصل 7: جلسات 28-37 تعمیم های فیلتر کالمن
فصل 8: جلسات 38-44 فیلتر کالمن پیوسته
فصل 9: جلسات 45-51 هموارسازی بهینه
فصل 10: جلسات 52-56 مباحث تکمیلی فیلتر کالمن
فصل 11: جلسات 57-63 فیلتر h-infinity
فصل 12: جلسات 64-67 مباحث تکمیلی فیلتر h-infinity
فصل 13: جلسات 68-79 فیلتر کالمن توسعه یافته extended kalman filter
فصل 14: جلسات 80-89 فیلتر کالمن unscented kalman filter
فصل 15: جلسات 90-96 فیلتر ذره ای particle filter
فصل 16: جلسات 97-108 انواع دیگر فیلتر ها ckf,cdkf, ghkf, immkf

دیدگاهها

  1. شاهین

    سلام جناب دکتر… من در استفاده از HUKF و HEKF یه سوال داشتم. مدل من برای اینکه تخمین نسبتا درستی رو ارائه بده نیازمند استفاده از گام زمانی خیلی کوچک 1e-8 دارد که باعث میشه زمان محاسبه بیشتر از 2 روز برسه. راه حلی نیست که با گام زمانی بزرگتر ( منظور dt درون حلقه تخمین است) به نتیجه رسید؟ اگر درون تابع UKF بجای اویلر از Runge kutta 4 استفاده بشه سریع تر و با گام زمانی بزرگتر نتیجه نمیشه گرفت؟ این کار پیچیدس؟

    • alij63@gmail.com

      سلام
      بله میتونید از روشهای حل عددی بهتر مثل رانگ کوتا استفاده کنید

  2. مهرداد

    سلام ببخشید برای تخمین همزمان سیستم گسسته پارامتر مورد تخمین ما ثابت هست و xk+1 با xk برابر میشه و تخمین ما فقط یک خط ثابت رو نشون میده چه باید کرد که اگر مقدار اولیه پرت بدیم به مقدار درست میل کند

    • alij63@gmail.com

      سلام
      جلسه 79 و 88 رو ببینید

      • مهرداد

        دیدم اون قسمت هارو اما مشکل برطرف نشد و

        • alij63@gmail.com

          میتونید ایمیل بدید تا بررسی کنم البته طبق قوانین سایت هزینه داره

  3. شاهین

    سلام جناب دکتر وقت شما بخیر… هنگام استفاده از hukf بعد از جلو رفتن فیلتر ارور زیر نمایش داده میشه.
    In schol (line 61)
    In ut_sigmas (line 33)
    In hut_transform (line 119)
    In hukf_predict (line 93)
    In HEKF_Kalman (line 102)
    که به دلیل منفی معین شدن ماتریس کواریانس هست. البته همزمان hekf درست تخمین میزنه. راه حل چیه که اطمینان حاصل بشه که ماتریس P منفی نمیشه؟ سیستم هم سیستم نسبتا بزرگیه و 30 تا حالت داره

    • علی جوادی

      سلام
      دلایل مختلفی میتونه داشته باشه مثلا تنظیم نامناسب پارامترها یا گام زمانی و …

  4. عارف اسلامي مهدي ابادي

    سلام
    جناب جوادی کدهای HPF و HEKPF توی فایل های قسمت 96 نیست

    • علی جوادی

      سلام
      عذرخواهی میکنم بابت مشکلی که براتون پیش اومد.
      براتون ارسال شد. ایمیلتون رو چک کنید.

  5. علی

    سلام و وقت به خیر آقای دکتر جوادی.
    سوالی داشتم از خدمتتون. در مسئله بنده تابع دینامیکی سیستم را نمی توان به صورت یک ماتریس و یا یک معادله بیان کرد اما می توان با استفاده از سایر نرم افزارهای کامپیوتری شبیه سازی را انجام و ورودی ها را مستقیم به سیستم داد و خروجی ها را دریافت کرد(فرضا برای تبدیل نقاط سیگما این نقاط را مستقیما به سیستم دهم و خروجی بگیرم). سوالی که داشتم این هست که آیا از تولباکس simmo که برای تبدیل ukf و ekf مطرح کردید امکان ایجاد ارتباط با این سیستم وجود دارد (چراکه در چهار حالتی که توضیح می دهید چنین شرایطی وجود ندارد-منظور تابع f و h در کدها است) یا باید کدها را خودم برای چنین شرایطی توسعه دهم؟ تشکر از راهنماییتون.

    • علی جوادی

      سلام
      فیلتر کالمن بر اساس مدل کار میکنه و حتما باید مدلی از سیستم داشته باشید.
      توصیه من اینه که شما با استفاده از ورودی و خروجیهای مناسب سیستم رو شناسایی کنید (با روشهای شناسایی سیستم) و بعد از این مدل برای فیلتر کالمن استفاده کنید.
      برای روشهای شناسایی به مجموعه شناسایی سیستمهای دینامیک مراجعه کنید

  6. شاهین

    سلام جناب دکتر وقت شما بخیر… در استفاده از تولباکس برای HEKF به مشکل برخوردم. من ورودی کنترلی با سه مولفه دارم که وابسته به زمان هستند. یعنی به ازای هر گام زمانی هر سه ورودی تغییر می کنند و وابسته به حالت هم نیستند و مقادیر عددی مشخص دارند. در تابع HEKF_Predict در شبیه سازی سیستم پیوسته با معادله اویلر در حلقه درون تابع نمیتوان در param مقادیر ورودی در درون تابع تغییر داد. راه حل چیه؟ در تمام مثال ها شما ورودی کنترلی رو وابسته به تخمین حالت در نظر گرفتین و به ازای گام زمانی فیلتر پارامترها قابل تغییرن در حالیکه اگر در حالت حل اویلر درون تابع مقادیر ورودی رو ثابت در نظر گرفتید.

    • علی جوادی

      سلام
      لزومی نداره که ورودی تابعی از حالت یا تخمین باشه.
      شما میتونید ورودی مورد نظر رو بیرون حلقه تولید کنید (یا از بیرون import کنید) و بعد داخل حلقه اویلر ازش استفاده کنید.
      در ضمن ورودی که در تمرین 14-15 جلسه 86 استفاده شده در هر گام زمانی عوض میشه چون تخمین حالت هر بار عوض میشه

  7. رها

    سلام وقت بخیر
    در آموزش هایی که ارائه دادید فیلتر کالمن سه بعدی هم آموزش دادید؟ کدوم بخش میشه؟
    تشکر

    • علی جوادی

      سلام
      اگر منظورتون اینه که تعداد حالتها 3 تا باشه، محدودیتی برای تعداد حالتها در فیلتر کالمن وجود نداره

  8. میثم

    با سلام خدمت دکتر جوادی
    فیلتر کالمن استاندارد یا معمول همونیه که از روش ristic برای نمونه بردرای استفاده میکنه؟
    مثلا اگه بخوایم یه فیلترذره ای با روش نمونه برداری جدید مثل Fission Bootstrap یا هر روش دیگه ای رو با فیلتر ذره ای استاندارد مقایسه کنیم باید با کدوم موردی که شما تو آموزشاتون اوردین مقایسه کنیم؟

    • علی جوادی

      سلام
      اونی که مدنظر شماست فیلتر ذره ای هست نه فیلتر کالمن.

      • میثم

        عذرخواهم اقای دکتر اشتباه تایپ کردم ،هدفم فیلتر ذره ای استاندارد بود.
        “فیلتر ذره ای استاندارد یا معمول همونیه که از روش ristic برای نمونه بردرای استفاده میکنه؟
        مثلا اگه بخوایم یه فیلترذره ای با روش نمونه برداری جدید مثل Fission Bootstrap یا هر روش دیگه ای رو با فیلتر ذره ای استاندارد مقایسه کنیم باید با کدوم موردی که شما تو آموزشاتون اوردین مقایسه کنیم؟”

        • علی جوادی

          البته من چیزی تحت عنوان فیلتر ذره ای استاندارد تا حالا نشنیدم ولی در جلسه 90 PF اولیه معرفی شده

        • شیما

          سلام سیستم من و اندازه گیری هردو گسسته هستند به صورت فانکشن تعریف کردم اما بعد از اجرا کداصلی ukf ماتریس حالت بدون تغییر است و در هر ستون فقط مقادیر اولیه رو نمایش میده و انگار معادلات حالت اجرا نمیشه و تخمین یه خط صاف است مشکل چیست؟

          • علی جوادی

            سلام
            دلایل مختلفی میتونه داشته باشه ولی حدس میزنم نویز (فرایند و اندازه گیری) بهش اعمال نکردید یا مقدارش کمه

            • شیما

              با تغییرنویز بازهم ukfیک خط راست هست ولی مگر نه اینکه ماتریس حالت بعد از اجرای فانکشن باید هرستون متفاوت و براساس معادلات حلقه for محاسبه شود؟ببخشید امکان ارسال کد خدمتتون هست؟

              • علی جوادی

                امکانش هست ولی هزینه داره

                • شیما

                  ممنون اگر ممکنه هزینش رو بفرمایید و راه ارتباطی

                  • علی جوادی

                    ایمیلتون رو چک کنید

  9. vajiheh

    سلام آقای دکتر جوادی
    از آموزش های خیلی خوبتون ممنونم
    سوالی که دارم اینه که چه موقع G منظور همون برداری هست که در ورودی سیستم یعنی u ضرب می شه رو می تونیم صفر در نظر بگیریم؟ باید چه شرایطی برقرار باشه که این اتفاق بیفته؟
    x=FX+Gu+W
    من فیلترهای کالمنی دیدم که به صورت x=Fx هستند الان در این مدل ها G رو صفر در نظر گرفته یا u رو صفر در نظر گرفته که به این صورت تبدیل شده است؟
    خیلی ممنون می شم پاسخ بدید

    • علی جوادی

      سلام
      بستگی به سیستم شما داره.
      اگر در صورت مساله ورودی کنترلی وجود نداشته باشه اون قسمت رو صفر در نظر میگیریم.
      شرایط خاصی نیست

  10. شاهین

    سلام وقت بخیر.. جلسه 88 قابل اجرا نیست. راه حل چیه؟

    • علی جوادی

      سلام
      منظورتون دقیقا چیه؟ کدها اجرا نمیشه؟ من که تست کردم و اجرا میشه.

دیدگاه خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

کنترل مقاوم ∞H سیستمهای خطی تحت اغتشاش با استفاده از نامساوی‌های ماتریسی خطی (LMI)
Original price was: ۲۶۴,۰۰۰ تومان.Current price is: ۱۶۶,۸۰۰ تومان.
کنترل مقاوم ∞H فیدبک خروجی سیستمهای خطی تحت اغتشاش با استفاده از نامساوی‌های ماتریسی خطی (LMI)
Original price was: ۴۳۲,۰۰۰ تومان.Current price is: ۲۱۶,۰۰۰ تومان.
کنترل مقاوم سیستمهای خطی تحت نامعینی‌های پارامتری و اغتشاش با استفاده از نامساوی‌های ماتریسی خطی (LMI)
Original price was: ۲۰۴,۰۰۰ تومان.Current price is: ۱۱۶,۴۰۰ تومان.
کنترل مقاوم فیدبک خروجی سیستمهای خطی تحت نامعینی پارامتری با استفاده از نامساوی‌های ماتریسی خطی (LMI)
Original price was: ۲۵۲,۰۰۰ تومان.Current price is: ۱۶۸,۰۰۰ تومان.
محصولات مشابه
سبد خرید

سبد خرید شما خالی است.

ورود به سایت
فیلتر کالمن

۶۹,۰۰۰ تومان

انتخاب گزینه‌ها